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Abstract

We study a large family of competing spatial growth models. In these the vertices in Zd

can take on three possible states {0,1,2}. Vertices in states 1 and 2 remain in their states

forever, while vertices in state 0 which are adjacent to a vertex in state 1 (or state 2) can

switch to state 1 (or state 2). We think of the vertices in states 1 and 2 as infected with

one of two infections while the vertices in state 0 are considered uninfected. In this way

these models are variants of the Richardson model. We start the models with a single vertex

in state 1 and a single vertex is in state 2. We show that with positive probability state 1

reaches an infinite number of vertices and state 2 also reaches an infinite number of vertices.

This extends results and proves a conjecture of Häggström and Pemantle [5]. The key tool

is applying the ergodic theorem to stationary first passage percolation.

1 First Passage Percolation

In this paper we study a class of competing spatial growth models by first studying stationary

first passage percolation and then applying our results to the spatial growth models. In first

passage percolation every edge in a graph is assigned a non-negative number. This is interpreted

as the time it takes to move across the edge. This model was introduced by Hammersley and

Welsh [6]. See [7] for an overview of first passage percolation.

Let µ be a stationary measure on [0,∞)Edges(Zd) and let ω be a realization of µ. For any x

and y we define the passage time from x to y, τ(x, y), by

τ(x, y) = inf
∑

ω(vi, vi+1)

where the sum is taken over all of the edges in the path and the inf is taken over all paths

connecting x to y.

The most basic result from first passage percolation is the shape theorem. We let 0 =

(0, . . . , 0) and 1 = (1, 0, . . . , 0). Define

S(t) = {x : τ(0, x) ≤ t}
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and

S̄(t) = S(t) +
[
−1

2
,
1
2

]d

.

The shape theorem says that there is a nonempty set S such that S̄(t)
t converges to S a.s.

Theorem 1. [1] Let µ be stationary and ergodic, with the distribution on any edge have finite

d + ε moment for ε > 0. There exists a set S which is nonempty, convex, and symmetric about

reflection through the origin such that for every ε > 0 there exists a T such that for all t > T

P

(
(1− ε)S <

S̄(t)
t

< (1 + ε)S
)

> 1− ε.

This theorem is a consequence of Kingman’s subadditive ergodic theorem. It is the only

property of first passage percolation that we need. In general little is known about the shape of

S other than it is convex and symmetric. Cox and Durrett have shown that there are nontrivial

product measures such that the boundary of S contains a flat piece [2]. However for any compact

nonempty convex set S there exist a stationary measure µ such that the shape for µ is S [4].

Another widely studied aspect of first passage percolation are geodesics. A geodesic is a

path G = {v0, v1, . . . } such that

τ(vm, vn) =
n−1∑

i=m

ω(vi, vi+1)

for any m < n. We let Gω(x, y) = G(x, y) be the union of all geodesics connecting x and y.

Define

Γ(x) = ∪y∈Zd{e : e ∈ Edges(Zd) and e ∈ G(x, y)}.
We refer to this as the tree of infection of x. We define K(Γ(x)) to be the number of

topological ends in Γ(x). This is also the number of infinite self avoiding paths in Γ(x) that

start at x.

Newman has conjectured that for a large class of µ, |K(Γ(0))| = ∞ a.s. [8] Häggström

and Pemantle proved that if d = 2 and µ is the i.i.d with exponential distribution then with

positive probability |K(Γ(0))| > 1. Newman has proved that if µ is i.i.d. and S has certain

properties then |K(Γ(0))| = ∞ a.s. [8] Although these conditions are plausible there are no

known measures µ with S that satisfy these conditions.

Now we will introduce some more notation which will let us list the conditions that we place

on µ. We say that the configuration ω has unique geodesics if for all x, y ∈ Zd there exists a

unique geodesic from x to y. If there exists a unique geodesic between x and y we denote it by

G(x, y). The configuration ω has unique passage times for all x and y 6= z

τ(x, y) 6= τ(x, z).
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For any ω we let µ
(0,1)
ω be the conditional distribution of µ on the edge (0,1) given that ω′(v, w) =

ω(v, w) for all edges except (0,1). We say that µ has finite energy if for any set A ⊂ R such

that µ{ω(0,1) ∈ A} > 0 and almost every ω, µ
(0,1)
ω {ω′ : ω′(0, 1) ∈ A} > 0.

As µ is a stationary measure we can study its ergodic theoretical properties. For any v ∈ Zd

define the shift map T v : [0,∞)Edges(Zd) → [0,∞)Edges(Zd) by

T v(ω)(j) = ω(j + v)

for all j ∈ Edges(Zd). The measure µ is totally ergodic if for all v ∈ Zd the action (µ, T v) is

ergodic.

Now we are ready to define the class of measures that we will work with. We say that µ is

good if

1. µ is totally ergodic,

2. µ has all the symmetries of Zd,

3. the distribution of µ on any edge has finite d + ε moment for some ε > 0

4. µ has finite energy

5. µ
(0,1)
ω is an absolutely continuous measure with support [0,∞) a.s., and

6. µ produces a shape S which is bounded.

Note that conditions 2, 4 and 5 imply that µ has unique geodesics and unique passage times.

These conditions were chosen to make the arguments as easy as possible and could be made

more general. All that is essential for the argument to show that there are at least two disjoint

infinite geodesics is that µ is totally ergodic and that Lemma 1 and Corollary 1 below are

satisfied. The conditions 2, 4 and 5 are used to show that coexistence occurs with positive

probability. Throughout the rest of the paper we will assume that µ is good. Unfortunately

there is no general necessary and sufficient condition to determine when the shape S is bounded.

See [4] for examples.

2 Spatial Growth Models

Now we explain the relationship between first passage percolation and our competing growth

models. For any ω ∈ [0,∞)Edges(Zd) with unique passage times and any x 6= y ∈ Zd we can
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project it to ω̃x,y ∈
(
{0, 1, 2}Zd

)[0,∞)
by

ω̃x,y(z, t) =





2 if τ(x, z) ≤ t and τ(x, z) < τ(y, z);

1 if τ(y, z) ≤ t and τ(x, z) > τ(y, z);

0 else.

If µ has unique passage times a.s. then µ projects onto a measure on
(
{0, 1, 2}Zd

)[0,∞)
. It is clear

that the models start with a single vertex in state 1 and a single vertex is in state 2. Vertices

in states 1 and 2 remain in their states forever, while vertices in state 0 which are adjacent to

a vertex in state 1 (or state 2) can switch to state 1 (or state 2). We think of the vertices in

states 1 and 2 as infected with one of two infections while the vertices in state 0 are considered

uninfected. In this way these models are variants of the Richardson model.

As each z ∈ Zd eventually changes to state 1 or 2 and then stays in that state for the rest

of time, we can speak of the limiting configuration. There are two possible outcomes. The first

is coexistence or mutual unbounded growth. If this occurs then the limiting configuration has

infinitely many z in state 1 and infinitely many z in state 2. The other outcome is domination.

If this happens then in the limiting configuration there are only finitely many vertices in that

state and all but finitely many vertices are in the other state.

For many measures µ (for example if µ is i.i.d. with nontrivial marginals) then it is easy to

prove that domination occurs with positive probability. But it is much more difficult to show

that coexistence occurs with positive probability. More precisely we define C(x, y) to be the

event that

|{z : lim
t→∞ ω̃x,y(z) = 1}| = |{z : lim

t→∞ ω̃x,y(z) = 2}| = ∞.

We refer to this event as coexistence or mutual unbounded growth. Our main result is

that with positive probability coexistence occurs.

Theorem 2. If µ is good then

P (C(0,1)) > 0.

This proves a conjecture of Häggström and Pemantle [5]. They proved this theorem in the

case that d = 2 and µ is i.i.d. with exponential distribution. Garet and Marchand have given

a different proof of Theorem 2 [3]. Their method follows more closely the approach taken by

Häggström and Pemantle.

4



3 Outline

In this section we outline the proof of our main result. For any x, y ∈ Zd and infinite geodesic

G = (v0, v1, v2, . . . ) we can define

Bω
G(x, y) = BG(x, y) = lim

n→∞ τ(x, vn)− τ(y, vn).

To see the limit exists first note that

BG(x, y) = lim
n→∞ τ(x, vn)− τ(y, vn)

= lim
n→∞ τ(x, vn)− τ(v0, vn) + τ(v0, vn)− τ(y, vn)

= lim
n→∞(τ(x, vn)− τ(v0, vn)) + lim

n→∞(τ(v0, vn)− τ(y, vn)).

As G is a geodesic the two sequences in the right hand side of the last line are bounded and

monotonic so they converge. Thus BG(x, y) is well defined. If for a given ω and all x, y ∈ Zd

the function BG(x, y) is independent of the choice of infinite geodesic G then we can define the

Busemann function

B(x, y) = Bω(x, y) = Bω
G(x, y).

The main step in our proof is Lemma 4, which states that the probability that {B(x, y)}x,y∈Zd

is well defined is 0.

We will work by contradiction to prove Lemma 4. In Lemmas 2 and 3 we assume that

{B(x, y)}x,y∈Zd is well defined a.s. and then apply the ergodic theorem to {B(x, y)}x,y∈Zd . Then

in Lemma 4 we show that the conclusions of Lemma 3 generate a contradiction with the shape

theorem. Thus with positive probability there are vertices x and y and distinct geodesics G0 =

G0(ω) and G1 = G1(ω) such that

BG0(x, y) 6= BG1(x, y).

From this point a short argument allows us to conclude that coexistence is possible with positive

probability.

4 Proof

The heart of the proof is applying the ergodic theorem to the Busemann function. This is done

in Lemmas 2 and 3. We start by showing that the symmetry of µ implies that the expected

value of the Busemann function is 0.
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Lemma 1. If {B(x, y)}x,y∈Zd is well defined a.s. then for all v ∈ Zd

E(B(0, v)) = 0.

Proof. By symmetry of µ we have that E(B(0,1)) = E(B(1,0)). Combining this with the fact

that B(0,1) + B(1,0) = 0 proves the lemma.

Now we apply the ergodic theorem to B(0, v).

Lemma 2. If {B(x, y)}x,y∈Zd is well defined a.s. then for all v ∈ Zd and ε > 0 there exists M

such that

P (|B(0,mv)| < εm for all m > M) > 1− ε.

Proof. First rewrite B(0,mv) as follows.

B(0,mv) = B(0, v) + B(v, 2v) + · · ·+ B((m− 1)v, mv)

B(0,mv) = Bω(0, v) + BT v(ω)(0, v) + · · ·+ BT (m−1)v(ω)(0, v)

B(0,mv) =
m−1∑

j=0

BT jv(ω)(0, v) (1)

As µ is good it is totally ergodic and the action (T v, µ) is ergodic. Thus by line (1) and Lemma

1 the claim is a consequence of the ergodic theorem.

We now strengthen this lemma by using the following corollary of shape theorem. For x ∈ Zd

we let |x| = |x1|+ |x2|+ · · ·+ |xd|.

Corollary 1. There exist 0 < k1 < k2 < ∞ such that for every ε > 0 there exists an N such

that

P

(
k1 <

τ(0, x)
|x| < k2 for all x such that |x| > N

)
> 1− ε.

Proof. The existence of k2 is due to the fact that the set S (from Theorem 1) is nonempty. The

existence of k1 follows because one of the requirements of µ being good is that S is bounded.

Lemma 3. If {B(x, y)}x,y∈Zd is well defined a.s. then for any ε > 0 there exists N such that if

n > N then

P

(
B(0, x)
|x| < ε for all x such that |x| = n

)
> 1− ε.

Proof. Given ε > 0 pick vectors v1, v2, . . . , vj such that |v1| = |v2| = · · · = |vj | and for all x

sufficiently large there exists i ∈ {1, 2, . . . , j} and m ∈ N such that

|x−mvi| < ε|x| and m|vi| ≤ |x|.
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For all x and y we have that

B(0, x) = B(0, y) + B(y, x).

This implies that for any x and y

B(0, x) ≤ B(0, y) + τ(y, x).

For any n let m be the largest integer such that m|vi| ≤ n. (This is independent of i.) Thus if

there exists x with |x| = n and B(0,x)
|x| ≥ ε then there exists i such that either

1. B(0,mvi) ≥ εn/2 = ε|x|/2, or

2. |x−mvi| < ε|x|/2k2 and τ(x,mvi) ≥ ε|x|/2.

(The constant k2 is from Corollary 1.)

By Lemma 2 there exists M such that

P (there exists m > M and i ∈ {1, 2, . . . , j} such that B(0,mvi) > 2εm|vi|/3 > εn/2) < 2ε/3.

Thus the probability of the first event is less than 2ε/3 if n is sufficiently large.

By Corollary 1 there exists L such that for any l > L

P (there exists z with |z| ≤ l and τ(0, z) ≥ k2l) < ε/3j.

Applying this with each mvi in place of 0 and εn/2k2 in place of l we get that the probability of

the second event is less than ε/3 if n is sufficiently large. Thus for any ε > 0 we get N so that

if n > N we get that

P

(
there exists x such that |x| = n and

B(0, x)
|x| ≥ ε

)
< ε

which proves the lemma.

Next we show that this generates a contradiction with the shape theorem.

Lemma 4. P ({B(x, y)}x,y∈Zd is well defined) = 0.

Proof. We work by contradiction. Suppose that with positive probability {B(x, y)}x,y∈Zd is well

defined. The Busemann function being well defined is a shift invariant event which, by the

ergodicity of µ, implies that {B(x, y)}x,y∈Zd is well defined a.s. and the conclusions of Lemma 3

apply. Pick ε < 1
3 min(k1, 1), where k1 comes from Corollary 1. By the choice of ε and Corollary

1 we have that there exists N such that for all n > N

P

(
τ(0, x)
|x| > 2ε for all x such that |x| = n

)
>

2
3
. (2)
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By Lemma 3 there exists n > N such that

P

(
B(0, x)
|x| < ε for all x such that |x| = n

)
>

2
3
. (3)

However there exists at least one infinite geodesic G = (0, v1, v2, . . . ) which begins at 0. (The

choice of G is immaterial.) For all n there exists k such that |vk| = n. For any k we have that

B(0, vk) = τ(0, vk). This shows that lines (2) and (3) cannot both be true. Thus the lemma is

proven.

Note that the lack of a well defined Busemann function implies that there exists at least two

disjoint infinite geodesics. Now we show that the lack of a well defined Busemann function also

implies coexistence has positive probability. Coexistence is implied if there exist two infinite

geodesics G0 = (v0, v1, v2, . . . ) and G1 = (w0, w1, w2, . . . ) such that

BG0(0,1) < 0 < BG1(0,1).

We show coexistence is possible by showing that we have two such geodesics with positive

probability.

Proof of Theorem 2: By Lemma 4 we get an event Ã of positive probability and x, y ∈ Zd

such that for all ω ∈ Ã we have two geodesics G0 = G0(ω) = (v0, v1, v2, . . . ) and G1 = G1(ω) =

(w0, w1, w2, . . . ) with

BG0(x, y) < BG1(x, y).

(If there is more than one pair of geodesics which satisfy this equation we can choose G0 and

G1 in any measurable manner.) It causes no loss of generality to assume that |x− y| = 1. Thus

by the symmetry of µ we can assume that x = 0 and y = 1. As BG0(0,1) and BG1(0,1) do not

depend on any finite number of edges in the geodesics, it causes no loss of generality to assume

that 0,1 are not endpoints of any of the edges in G0 or G1. By restricting to a smaller event

A ⊂ Ã of positive probability we get a nonrandom r > 0 such that for all ω ∈ A

BG0(0,1) < r < BG1(0,1). (4)

By the symmetry of µ we can assume r ≥ 0. From the definition of BG1(0,1) we get that

BG1(0,1) ≤ τ(0,1).

Now we form a new event A′. Given ω ∈ A define ω′ by

ω′(v, w) =

{
ω(v, w) + r, if 1 ∈ {v, w};
ω(v, w), else.
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The event A′ consists of all ω′ that can be formed from in this way from some ω ∈ A. By

conditions 2, 4 and 5 of the definition of µ being good, the event A′ also has positive measure.

We let τ ′ indicate the passage times in ω′ and τ indicate the passage times in ω. It is easy to

check that for any z 6= 1

τ ′(1, z) = τ(1, z) + r.

Also if 1 is not an endpoint of any of the edges in the geodesic Gω(0, z) then

τ ′(0, z) = τ(0, z).

As BG0(0,1) < BG1(0,1) ≤ τ(0,1) we have that for all large n the vertex 1 is not an endpoint

of any of the edges in the geodesic Gω(0, vn). Thus τ ′(0, vn) = τ(0, vn) for all large n. Also note

that since neither 0 or 1 is an endpoint of any of the edges G0(ω) or G1(ω) we have that G0(ω)

and G1(ω) are both geodesics for ω′.

Thus for any ω′ ∈ A′ we have that

Bω′
G0(ω)(0,1) = lim

n→∞ τ ′(0, vn)− τ ′(1, vn)

= lim
n→∞ τ(0, vn)− (τ(1, vn) + r)

= Bω
G0(ω)(0,1)− r

< 0.

The last step follows from line (4). We also get that

Bω′
G1(ω)(0,1) = lim

n→∞ τ ′(0, wn)− τ ′(1, wn)

≥ lim
n→∞ τ(0, wn)− (τ(1, wn) + r)

≥ Bω
G1(ω)(0,1)− r

> 0.

The last step follows from line (4). Thus we have coexistence for all ω′ ∈ A′.
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